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Abstract

The Walker et al. (1989) self-conslstent method to predict both the

elastic and inelastic effective material properties of composites is

examined and compared with the results of other self-consistent and

elasticity based solutions. The elastic part of their method is shown to

be identical to other self-consistent methods for non-dilute reinforced

composite materials; they are the Hill (196S), Budlansky (198S) and

Nemat-Nasser et al. (1982) derivations. A simplified form of the

non-dilute self-consistent method is also derived.

The predicted, effective, elastic, material properties for a fiber

reinforced material using the Walker method was found to deviate from the

elasticity solution for the u31, K12, and _31 material properties (fiber

is in the 3 direction) especially at the larger volume fractions. Also,

the prediction for the transverse shear modulus, _12, exceeds one of the

accepted Hashin bounds. Only the longitudinal elastic modulus E33 agrees

with the elasticity solution. The differences between the Walker and

elasticity solutions are primarily due to the assumption used in the

derivation of the self-consistent method, i.e. the strain fields in the

inclusions and the matrix are assumed to remain constant, which is not a

correct assumption for a high concentration of inclusions.

*Summer Faculty Fellow at NASA Lewis Research Center.
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A summaryof some other methods which predict the effective material

properties of a composite is also presented. In particular, the two

different bounding solutions of Hashln (1965, 1972) for the transverse

shear modulus, _12, are reviewed. Other methods examined include the

dilute self-conslstent method by Eshelby (1957) and Russel and Acrlvos

(1972), the Mori-Tanaka method (1973), and the three-phase model of
Christensen and Lo (1979b).

Introduction

Over the last 30 years there has been a tremendous effort to predict

the effective material properties of a composite materlal based on the

material properties of the individual constituents. The motivation behind

this effort is to better design and analyze two part composite materials

without actually having to produce and test each and every posslble

composite materlal. Recently, Walker et al. (1989) have proposed using a

self-consistent method to predict the elastic and Inelastlc materlal

properties and response. This method was developed for implementation in a

finite element code to predict the response of a composite structure. This

report will examine in detail the elastic portion of this solution, and

will compare it to other self-consistent methods and elasticity solutions

to assess its ability to predict the effective material properties of a

reinforced composite material.

Some of the orlglnal work in developing the self-conslstent concept

was done by Hershey (1954), KrOner (1958), and Kerner (1956) on single

crystal and polycrystalline materials. This work, however, did not examine

multiple phase materials such as spherical or cylindrlcal fiber reinforced

composite materlals. In 1957, Eshelby introduced his transformation

tensor, known as the Eshelby Tensor, which relates the strain of an

inclusion constrained inside an infinite elastic matrix to the strain of

the same inclusion when placed outside of the matrix without any

constraints. This basic tensor has far reaching implications, one of which

allows the calculation of the effective material properties of a two phase

material. One main assumption in the derivation of the Eshelby Tensor is

that multi-inclusions do not effect one another. For low concentrations,

this method - known as the self-conslstent method for dilute concentration

(DSC) - accurately predicts the effective material properties.

Due to the limitation of the DSC method to only low concentrations of

inclusions, Hill (1965) and Budiansky (1965) simultaneously developed a

self-conslstent method that extends the basic Eshelby method to high

concentrations - so called the self-consistent method for non-dilute

concentration (NSC). This method basically lets the matrix material assume

the properties of the desired effective material properties (still

unknown), and then places a single inclusion into this matrix. The Eshelby

tensor then figures into the description of the strain in both the

inclusions and the overall composite. The effect of multiple inclusions is

assumed to be modeled by allowing the matrix to have the effective

material properties. However, the strain fields in both the inclusion and

matrix are still assumed to be constant, as required when using the

Eshelby Tensor, which is not valid for densely packed inclusions. The

-2 -



prediction of elastic properties using NSC method for material represen-

tatlon is better then that of the DSC method. Predictions for the NSC

method approach the limiting value of the inclusion properties as the

inclusion concentration ratio approaches one; predictions for the DSC

method do not. It should also be noted that the solution of the NSC

problem Is Iterative, since the effective material properties are imbedded

directly in the formulation.

This paper Is mainly concerned with the NSC method, since the

solution of Walker et al. (1989) is an extension of this method into the

inelastic range. The basic elastic portion of this method is shown to be

identical in form to the NSC method. Furthermore, the Nemat-Nasser and

Taya (1981) derivation of the self-consistent method is also shown to be

the same as the NSC method.

Another method that uses the Eshelby Tensor is the Mori-Tanaka (1973)

method. This method accounts for the Interaction of the inclusions by

deflnlng a second transformation matrix (or strain concentration tensor)

between the actual matrix materlal and the Incluslons (recall that the

original transformation matrix describes the relation between an Incluslon

and the effective materlal properties or homogeneous composite material).

By including thls additional constraint, the effectlve material properties

will match the llmitlng values at both low and high concentrations; plus,

all five of the elastic constants agree with the elasticity solutions for

fibrous composites. However, thls method Is currently limited to elastic

solutlons only.

In addition to the self-consistent methods for predicting the

effective material properties, there has been a number of elasticity based

solutions. Hashln and Shtrlkman (1982a, 1962b, 1963) lald much of the

basic foundation for employing the elasticity equations using energy

methods to develop solutions to the two part spherical and cylindrical

inclusion problems. Later, Hashin (196S, ]972, ]979), Hashin and Rosen

(1964), and Whitney and Riley (1966) presented exact solutions for most of

the material propertles. The one exception is the shear modulus of a

composite with spherical inclusions, or the transverse sheaf modulus of a

fiber reinforced composite. In these cases, only bounds are obtained. The

Hashln bounds are used extenslvely in the literature to determine what is

acceptable, but there is considerable confusion on how to get these bounds

and what bounds to use. These bounds are discussed In detail later.

This paper briefly presents each of the basic methods mentioned above

so that they can be used to compare results with those of the Walker

method. The final section presents Walker's method, and derives many of

the basic equations to show its similarity to the other self-conslstent

methods. A comparison of the various methods is included.

A quick note on the notation. Bold letters represent tensor

quantities. The subscripts m and f represent the matrix and fiber (either

cylindrical, elllpsoldal, or spherical particulate), respectively. This

report assumes the fibers are always oriented in the 3 direction, such

that E33 is the modulus in the fiber direction. The other two directions,

1 and 2, are perpendicular to the fiber and to each other. Since only
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transversely isotroplc materials are considered for fiber reinforcing -
i.e. the fiber array is hexagonal - the 1 and 2 directions are inter-
changeable. The five independent material properties used in this report

for fiber reinforced composites are: the longitudinal Young modulus, E33,

the longitudinal Polsson ratio, v31, the plain strain transverse bulk

modulus, K,2, the longitudinal shear modulus, _31, and the transverse

shear modulus, _12.

Self-Consistent Method for Dilute Concentrations (DSC)

All self-conslstent methods rely on two conclusions reached by

Eshelby (1957). First, the free strain, eT, of an inclusion is linearly

related by the Eshelby Tensor to the constrained strain, e¢, of the same

inclusion imbedded in an elastic body. Second, the strain is uniform in

the inclusion. These two conditions allow the effective material

properties for dilute concentrations to be determined.

Since the Eshelby tensor is central to the DSC method, it will now be

explained using the formulation of Russel (1972, 1973), Christensen

(1979a) and Benvenlste (1987). Assume that an elllpsoldal shaped body

(later to be defined as the inclusion) undergoes a free strain, cY,

without any constraints, i.e. _i] = O. Next, force this inclusion body

back to its original elllpsoldal shape by applying tractions at its

surface. Now place this elllpsoldal body inside an infinite elastic body

that has an elliptical shaped void of the same shape as the original shape

of the inclusion. When the Inclusion is first placed in the void, just

before the tractions are released, the Inflnlte body is strain and stress

free. Finally, the tractions on the inclusion are released, causing both

the inclusion and body to change shape. At the Interface, both the

inclusion and the body will have the constraint strain state, ec. The

Eshelby tensor simply relates the free strain, eT, to this constraint

strain, ec, as

e c = Se T, (1)

where S is the Eshelby tensor. The S tensor is a function of the inclusion

shape (must be ellipsoidal in shape) and the material properties of the

body. Exact solutions for S have been worked out for various inclusion

shapes for isotroplc and transversely lsotroplc materials by Eshelby
(1957), Mura (1987), Christensen (1979a}, Walker (1989), and others.

The Eshelby Tensor can be used in composite analyses where the

inclusion has material properties different from those of the constraining

body, and where the complete composite undergoes an overall or applied

strain, e °. This is done by modeling the free strain effect as a material

property effect. The total strain, e, for an inclusion of the same

material as the matrix in which it Is embedded equals the overall strain,
e °, plus the constraint strain, e c, less the original free strain, eT

giving

Dm e (=oal) = Dm (e° + ec - eT), (2)
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where D= is the material stiffness matrix for the matrix material. For an
inclusion of a different material, say Df, the strain does not have an
original free strain associated with it, since it is modeled as a material
property effect. Therefore, the total stress is given by

Dr c (=_fl) = Dr (c° + c°). (3)

Since the stress states for both matrix type inclusion, cat, and for the

fiber type inclusion, _fl, must be equal for the same inclusion geometry,

Eqs. 2 and 3 can be combined to give

Dm (¢o + ec - cT) = Dr (¢o + ec), (4)

or by using the definition of the inclusion strain, ef = c° + ec, Eq. 4

can be rewritten as

CT = Dm I (D= - Dr) _f. (s)

Substituting Eq. 5 into Eq. I gives

e c = Sm [ I_ 1 (Din - Dr) ] cr, (6)

where the components of the Eshelby tensor, Sm, are dependent upon the

matrix material's properties. Using the definition of the inclusion strain

once again gives

cf = e° + Sm [D_ I (D= - Dr)] cf. C7)

Rearranging Eq. 7 gives

cf Tc ° [I + Sm [D; 1 (Dr Dm)]] -1= ----. -- C ° ' (8)

where T is cal]ed the stra{n concentration tensor, and I Js the identity

matrix. A second equation is now needed. One that relates the effective

material properties, D, to the material properties of the matrix and

fiber, and to the strain concentration tensor, T.

Following the derivation of Russel and Acrivos (1972), the volume

averaged stress in the inclusions and matrix is added together to give the

volume averaged stress in an arbitrary subvolume, i.e.

<_> = V _ dv + V
-_n= i Vn n=l ' n

(9)

where V is the total volume, Vn is the volume of each inclusion, and V-ZV n
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is the matrix material volume. Also, o_ and vf represent the stress in the

matrix and inclusion (or fiber) material, respectively. The first integral

is split into two parts, one part representing the total subvolume as a

matrix only material, i.e. no inclusions, and a second part representing
the inclusions as matrix material. The stresses in each of the three

integral terms are then written in terms of strain,

<_> = V Dmc ° dv - D®(¢ ° + e¢) dv +
=I n

1 [ ;V Df(¢° + ¢c) dv.÷V
n=l n

(I0)

The strain in the first integral represents the actual strain of the
matrix material for the total subvolume as if there are no lncluslons. The

inclusions are modeled by the second and third integrals. The second

integral subtracts out the inclusion volume made of matrix material, Dm,

whereas the third integral adds back in the actual inclusion material, Dr.
In both cases the strain includes the actual strain, ¢ °, and the

constraint strain, ¢ c that any inclusion wtll experience. Equation 10 can

be further simplified to

= _ Dr - Dm) cf dv.<0"> Dm ¢o + Vn I
(11)

The effective material property matrix, D, relates the average stress and

strain over a representative subvolume, i.e. <¢> = D <¢>. Assuming that

the inclusion strain ¢ r does not vary over the volume of the inclusion, an

assumption that is valid for a single ellipsoidal inclusion, Eshelby

(1957), Eq. 11 can be integrated to give

<¢> = Dm ¢o + Vf(Df - Dm)¢ r, (12)

where Vf • [0,1] is the volume fraction of the inclusions. Noting that <¢>

and c ° are the same far from the inclusion, Eq. 12 can be rearranged to

glve

= D m + Vf(Df - Dm) T, (13)

where ¢ f = Tc °.

Combining Eqs. 8 and 13 gives the final form for the effective elastic

modull of the DSC method, i.e.

5 = D. + Vf(Df - DIn) [I + S. [D_ 1 (Dr - DIn)]] -1. (14)
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This equation can be used for both spherical or cyllndrlcal inclusions,

the only difference will be in the values for the components of the

Eshelby tensor, S,.

The flve effective materlal properties for a transversely Isotroplc

fiber reinforced composite predicted by Eq. 14 are plotted In Figs. I-5.

In four of the five material properties, the DSC deviates from the

elasticity solutions or bounds because of the assumption of no inter-

actions between Incluslons. For dilute concentrations, the agreement is

reasonable, and this method can be used. The shear modulus and Poisson

ratio used for the glass fiber and polyester matrix materlal properties in

the Figs. 1-5 are, Gm = 0.593 GPa and Cr = 29.1 GPa, and vm = 0.45 and

vf = 0.21 (Richard (1976)).

The Eshelby tensor for a transversely isotroplc, continuous,

cylindrical fiber reinforced, composite material - such as the one

described in the figures - is given by (Walker et al. (1989))

S m =

5-4u m 4Vm-I V m

8(1-Vm) 8(i-um) 2(1-Vm)

4Vm-i 5-4Vm V m

8(1-Vm) 8(I-v=) 2(1-Vm)

0 0

0 0 0

0 0

0 0

0 0

0 0 0

0 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 3-4Vm
4(1-vm)

where Vm is the Poisson ratio of the matrix. It should be noted that the

three terms in the lower right quadrant are a factor of two larger then

the values reported by Eshelby, 1957 and others due to notation. If Voigt

notation is used, i.e. Slj, the above values are correct; they are a
factor of two larger then those associated with the 4 TM order tensor

notation, i.e. SlJkl. A different Eshelby tensor is required for a
spherical, reinforced, composite material.

Mori-Tanaka Method

The Mort-Tanaka method is similar to the DSC method, except it

enforces the condition that the effective material properties must match

the properties of the inclusion material as the concentration approaches

one, i.e. D _ Df as Vf _ 1. This is accomplished by introducing a new
strain concentration tensor, G, which relates the strain in the matrix to

the strain in the inclusion, i.e.

c r = Gc m, (15)
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and by rewriting Eq. 13 as

D = Dm + Vf(Df - Din) A,

where e f = AE °.

(16)

The A matrix is now assumed to include the effects of multiple inclusion

interactions, as requlred for the non-dilute case. Recall, the T matrix

only assumed a single inclusion in a matrix with no considerations of

multiple inclusion Interaction. Combining the definitions of A and G, and

eliminating ef, gives

Gc _ = Ac °. (17)

Because the overall strain, e°, is simply the sum of the relative volume

fractions of strains in the matrix and the inclusions, the equation
becomes

Ge m = A (Vm Cm + Vfef), (18)

where Vm and Vt are the matrix and fiber volume ratios, respectively, such

that Vm + Vt = i. Rearranging Eq. 18, and using Eq. iS Elves

A = G [VmI + VfG] -I (19)

Equation 19 defines the new strain concentration tensor between the

fiber strain ef and the applled strain c°. However, G Is still not known.

Mori and Tanaka (1973) make the assumption that at high concentrations the

matrixstrain equals the applied strain which lead them to postulate that

G = T. Making this substitution into Eq. 19, and then substituting back

into Eq. 16 gives

= Dm + Vf(Df - Dm) T [VmI + VfT] -I, (2O)

where T = [I + S, [D_ 1 (Dr - Dm)]]-*

This is the final form of the MorI-Tanaka method. It is similar in form to

the DSC method, except for the additional term [VmI + VfT] -I which acts as

a correction factor at non-dilute conditions. At the low and high limits

of inclusion concentration, Eq. 20 becomes, respectively,

-) Dm as Vf -> O, and D -) Df as Vf -> I.

Notice that there is an inconsistency in this derivation; the assumption

that cm = e°, implying that G = T, when going from Eq. 19 to 20 cannot be

O

The theoretical basis for this assumption is discussed in further detail

In the "Revised Mori-Tanaka Using the NSC Method '°section of this report.
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applied earlier in the derivation, say at Eq. 17. Additional comments on

the Mori-Tanaka method can also be found in the review papers by

Benvenlste (1987) and Christensen (1990).

In a more recent paper, Benveniste (1990) has shown that the methods

of Willis (1981) and Levln (1976) are equivalent to that of Mori-Tanaka

described above. It is worth noting, however, that the P matrix used by

Benveniste, defined as P = SmD_ is not symmetric as he states. However,

the final effective stiffness matrix D is symmetric, as required, even if

P is not symmetric.

The five material properties predictions for a transversely Isotroplc

composite using the Mori-Tanaka method, Eq. 20, are plotted in Figs. i-5

along with other methods that will be discussed in the following sections.

The Mori-Tanaka results match the elasticity solutions for 4 of the 5

material properties (Figs 2-5), while the fifth property, the transverse

shear modulus, matches the lower Hashin Bound (Fig. I). The material

properties and the Eshelby tensor are the same as those which were used in

the DSC predictions. One distinct advantage of this method is that the

effective material properties can be determined without an iteration

process, which is not true for all methods as will be seen in later

sections. Furthermore, the results are in agreement with both the known

elasticity solutions and the Hashin bounds, but yet can be written in

compact tensor equation form.

Hashin Bounds

One of the first efforts to predict the effective material properties

of a two phase composite material, for any concentration, using varia-

tional energy principles was done by Hashin (1962), which was later

generalized to a multi-phase material by Hashin and Shtrikman (1962a, b and

1963). Note that the Hashin method is not a self-conslstent method, but an

exact elasticity method. By applying the variational theorems of the

theory of elasticity, they determined upper and lower bounds on the

effective bulk and shear properties for composites with spherical

inclusions. Basically, first they used a general elasticity formulation to

obtain the displacement flelds of spherica! bodies. Then they applied two

different boundary conditions; one for strain, and the other for stress.

Finally, the theorem of minimum complementary and potential energies were

applied to the strain and stress boundary conditions, respectively. Since

two different boundary conditions were used, two bounds were determined,

an upper bound and a lower bound. For a spherically reinforced composite

material, they found the bulk modulus bounds coincided, giving an exact

solution, but the bounds for the shear modulus did not coincide.

These same methods were later applied to fiber reinforced, trans-

versely Isotroplc, composite materials by Hashin (1964). He was able to

show that for four of the five properties (i.e. the longitudinal elastic

modulus, E33, the longitudinal Poisson ratio, u31, the plain strain bulk

modulus, K12, and the longitudinal shear modulus, _31), both the upper and

lower bounds, due to the minimum potential and complementary energies,

coincide giving an exact solution. However just llke the sphere model, the
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upper and lower bounds for the transverse shear modulus, _12, do not
match. Because there is not an exact solution for _12, a number of other
methods have been developed over the years including the Self-Consistent
(Hill, 1965 and Budlansky, 1965), Generalized Self-Consistent (Christensen

and Lo, 1979), Mori-Tanaka (Mori and Tanaka, 1973), Modified Mori-Tanaka

(Luo and Weng, 1987), and Differential methods (Roscoe 1952). Although

these other methods can also predict all material properties, this report
concentrates on the ambiguous _12 term.

Because of the strong theoretical basis of the Hashin bounds, all
other methods are generally compared with it as a check for correctness.

If a particular method does not match the Hashin bounds for the four known

properties, or falls outside of the upper or lower bounds for the fifth

property, _12, then the method is considered to be in error. However upon
reviewing the literature, one can very quickly become confused with the
many different bounds that are referred to as the 'Hashln Bounds'. The

main cause for this confusion is that Hashin actually derived two sets of

bounds for a fiber reinforced composite with randomly placed parallel
fibers of different sizes. Hashin (1979) also developed a third set of

bounds for a composite constructed with identical fibers arranged in a
hexagonal pattern which is not discussed in this paper.

The original Hashin bounds for P12 that were set forth in his 1965
paper required the solution of 8 linear equations. However, if the fibers

are assumed to be solid (not hollow) the number of equations reduce to 6,

as was presented by Hashin (1972) in a later paper. The upper (+) and

lower (-) bounds, based on the potential and complementary energies,
respectively, are

. [ 2 1o°,P12 = _m 1 1-2urn Vf , (21)

_m

1 l_2u m Vf A

where u m = Potsson's ratio of matrix,

Pm = shear modulus of matrix,

Vf = fiber volume fraction, and

A4 = constant from the solution of the 6 linear equations.

The 6 linear e_uatlons, in matrix form, that must be solved to determine
the constants A4 are
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1 V_ Vf 0 0
1 "Vf

3-4Um I -2V_ Vf 0 0
0 - 3-2u----_"Vf l-2Pm

1 1 I 1 -I -1

0 3-4Pro -2 1 0 3-4Pf
3-2Um 1-2Pm 3-2Pf

3 1 _ _._L_f -3 ._f
1 3-2Vm -3 1-2v= Pm 3-2v'"---_-_

0 -1 2 -1 0 1._._£r
3-2v m 1-2v m 3-2vf _m

O"

and for A4 are

4

C

A2

A c3

C

As

C

A6

1

0

0

0

0

0

(23)

3 1 3V_ Vf 0 0
1 3-2Um Vf 1-2Pm

-1 1 2V_ -Vf 0 0
0 3-2v'--"--_"V--f- 1-2vm

1 1 1 1 -1 -1

0 3-4urn -2 1 0 3-4vf
3-2Pm 1-2Vm 3-2vf

3 1 _ _f -3 .pf1 -3
3-2Pm 1-2Vm Pm 3-2Uf Pm

-I -i 0 1 .pf
0 3-2urn 2 l_2u m 3-2v--_f p-_

O"

AI

cr

A2

Cr

A3

_r

A4

A _s

A;

0

0

0

(24)

These two bounds, referred to as the composite cylinder assemblage

(CCA) bounds by Hashln, are plotted in Fig. 6 as a function of the fiber

volume fraction. In later papers, Hashin (1972, 1979) presented the

following closed form solutions to Eqs. 21 and 22 for the 6 linear

equations; they are

J[J'12 = _m 1 +
( l+_m)Vf

p- Vf[1 + 3/3_(1-Vf)2]ocVf3 + 1

(25)
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I ÷
(1+tim)V[

(26)

where _m- _flf _ + _m

1 + _f' P - _ - I '

• •

, J

,:÷2,. +2,f

"f and

• •

Km and Kf = transverse bulk modull for the matrix and fiber.

There has been considerable confusion in the literature regarding the
CCA bounds, because of the two different forms of these equations. Unless

one reads Hashin's papers carefully, it is easy to assume that Eqs. 21 and

22, and Eqs. 25 and 26 are two different sets of bounds; they are not.

Furthermore, if one uses the standard definition for the bulk modulus,

K = 2.(l+v) or K = _ + 2./3, (27)
3(1-2p)

for either the matrix or fiber material, Eqs. 21 and 22 will glve
different results from those of Eqs. 2S and 26. Hashin, as well as others,

e.g. Christensen (1979a), define K" as the plain strain or transvers__ee bulk

modulus, which is different than the standard isotropic bulk modulus, K.

The K" term originated from the transversely isotroplc, engineering,

material property K,2, which Is defined as K12 = ½(Cll + C,2) where CIj
are the stiffness moduli. This transversely tsotropic definition is then

carried over to describe the bulk modulus of both the lsotropic fiber and

matrix materials. Therefore, the correct definition to use with Eqs. 25
and 26 is

, . = .2
K = X + . = l-2v 3#-E'" (28)

To make matters more confusing, Hashin (1965) developed a second set

of upper and lower bounds for ,12 using the Polarization Extremum

Prlnciple that was developed by Hashin and Shtrlkman (1962a, b) and Hill
(1965) for spherical inclusions. A detailed derivation can also be found

in Hashln (1972). The final upper and lower bounds for the transverse
shear modulus of this method are
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+ 1 - Vf (29)
_12 = _m + Po

I (Kf+2_f)Vf
+

_/_2 = _f +
Vf

o

1 (Km+2#m) (1-Vf)
o

#f-#m 2_ m (Kin+#m )

(3O)

where: Pm, _f = shear modull of the matrix and fiber,
• •

Km, Kf = transverse bulk modull of the matrix and fiber, and

Vf = fiber volume fraction.

These equations, referred to as the Arbitrary Cylindrical Phase (ACP)

model, are plotted in Fig. 6 along with the non-dilute self-consistent

method (NSC). Note that they do not coincide with the previous bounds,

Eqs. 21 and 22, or Eqs. 25 and 26. Because the two sets of bounds - the
CCA and ACP - do not coincide, they tend to be confused with one another.

In fact, both bounds are still being used and both are labeled as the

'Hashin Bounds'. Hashln (1979) summarized both sets of bounds briefly and

stated that the upper bound of the ACP method along with the lower bound

of the CCA method should be used. This gives the tightest bounds for the

unknown transverse shear modulus #12, and are the Hashln bounds plotted in

Fig. I.

Three-Phase Model

The Hashln model discussed above gave the exact solution for 4 of the

5 effective material properties, but only the bounds for the remaining

property, the transverse shear modulus. Christensen and Lo (1979) later

developed an exact solution for the transverse shear modulus by using a

three phase geometry. Like the Hashin solution, they use the basic

elasticity solution for cylindrical geometries, and thus eliminate the

need to use the Eshelby solution for inclusions. Although the three-phase

model is not a self-conslstent model, it is often referred to as the

generalized self-consistent model because it uses three phases, including

an outer phase that is modeled as an equivalent, homogeneous or smeared,

composite material similar to the other self-conslstent methods.

The geometry used in this model consists of a cylindrical fiber

embedded in a larger cylindrical matrix, which is placed in an infinite,

homogeneous, composite material that represents the effective composite

material. The method starts by assuming the solution for the displacements

in all three phases, and then the eight boundary conditions are applied.

The displacements, Ur and ue, in the outer phase are
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ure = 4_[ b + a3(_+l)F + c3 cos(2e),

uee = _-_[-_- - a3(11-1)_ + c3 sin(2e),

(31)

(32)

where b is the radius to the outer edge of the matrix material, and r z b.

In the matrix phase, the displacements are

Urm = _ _2(1_m-3) + d2[ + c2(nm+l) + b2 cos(2O), (33)

uem = _ _2(nm-3) d2b - c2(w=-1 r

where a -_ r -_ b. And in the fiber phase, they are given by

Urr - 4_f l(nr-3) + dl cos(2e), (35)

urr = t(nr+3) - dl sln(2e), (36)

where r _ a. The constants a3, c3, a2, d2, c2, b2, al, and dl are to be

determined, and W = 3-4u, _m = 3-4um, and 0£ = 3-4u£.

In addition to the eight boundary conditions, the energy requirement

(Eshelby, 1956) that

2n

I[_ o o o b _e = o (37)Ure + Tro Uoe - Ore Ur -- Tree UT ]r=b

o

must also be satisfied. The final result for the effective transverse

shear modulus is given by the quadratic equation
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(_12/_m)_A + (_12/_g)B + D = 0

where

A = 3VcC1-Vf)2[_/_m-1] [_f/_+_f] +

[ (t._/_.)_- + nf'rl., - ( (l_/_m)n,_ - -_f)V_]x

[_mVf {_r/_- I) - ((_f/_.) _. + I)],

(38)

(39)

B = -6Vf(1-Vf) [_f/_m-1][_f/_m+_f] + [(Pf/_m)_m + (_f/_m-1)Vf + 1]x

[C_m-1)Cpf/_m+_f) - 2V_CC_f/_m)_m - _f)] +

Vf(_m+1)[_f/_m-1][_f/_m + _f + ((_f/_m)_m - _f)V_], (40)

D = 3VfCl-Vf)2[f_fl_m-1][_fl_m+Wf] + [(_fl_m)_m + (_fll/m-1)Vf + 1]x

[_lf/_lm+ _f + ((Pf/_m)_m - _f)V_]. C41)

The quadratic equation, Eq. 38, will have one negative root and one

positive root, which is the effective transverse shear modulus, U12.

The positive root of Eq. 38, plotted in Fig. I, lies between both

sets of Hashin bounds which demonstrates the validity of the solution. The

one assumption made in the derivation of the Chrlstensen-Lo model is that

all fibers interact similarly with one another, and thus the outer phase

can be modeled as an equivalent composite material. Even though this is a

sound physical model, it is still an assumption that is required to solve

the problem, and should be stated. Nevertheless, we shall refer to their

result as the exact elasticity solution. The difficulty in using the

three-phase model is that, like the Hashin model, it requires solving an

elasticity problem. This makes it very difficult, if not impossible, to
extend the method into the inelastic domain. In the self-consistent

methods, the problem is formulated using the strains in tensor notation,

which lends itself nicely to including inelastic strains.

Self-Consistent Method for Non-Dilute Concentrations (NSC)

In order to extend the basic self-conslstent method to non-dilute

concentrations of inclusions, Hill (196S) and Budiansky (196S) used the

idea of an equivalent matrix surrounding the inclusion. This equivalent or

homogeneous matrix was assumed to have the material properties of the

overall composite, and thus accounts for the effect of the inclusions

interacting with one another.

The final form of Hill and Budiansky for predicting the effective

material properties can be easily derived by starting with the results

obtained in the DSC method. First, recall Eq. 4, and modify the Dm tensor

to be the D tensor which represents the effective material properties

(remember, the fiber is now assumed to be embedded in a homogeneous

composite material D, and not into the matrix Dm).
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Cc ° + c _ - c T) = Df (c ° + c c) C42)

Preceding in the same manner as with the DSC method, as outlined In Eqs. 5

through 8, the final strain concentration tensor will be

T : [I + s [D-:(Dr - G)]] (43)

This can now be used in Eq. 13 to give

= Dm + VfCDf - Din) [I + S [_-I (Dr - D)]]-I, (44)

which is the standard form of the NSC method. It should be noted also that

the Eshelby tensor, S, is now a function of the homogenized composite

phase. If the fibers are arranged in a hexagonal array, the composite will

be transversely isotroplc and the S tensor will have the following

components (Walker et al. 1989)

6511+512 3512-511 513 0 0 0

85,, 85, 1 251,

35, 2-51, aS,, +512 513 0 0 0

851 ! 8511 2511

0 0 0 0 0 0

0 0 0 0.6 0 0

0 0 0 0 O.S 0

0 0 0 0 0 351 , -512

45,,

(45)

While Eq. 44 is not in the same form as the equations given by Hill

(1965) and Budlansky (196S), it can be rearranged and manipulated to match
their solutions. Nemat-Nasser (1981) has also derived an alternate form of

Eq. 44, l.e.

5 = Dm + VfCDf - Din) (5 - Dr)-* 5 [(D - Dr) -1 5 - S ]-1, (46)

where his notation has been changed to match the notation in this paper.

Equation 46 can be manipulated as follows to produce Eq. 44.

5 = Dm + Vf(Df - Din) (5 - Dr) -1 [(D 1 Dr) -1 - S 5-1] -1,

5 = D® + VfCDf - Din) [I - S D-1 (5- Dr)] -1,
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5 = Dm + Vf(Df - Dm) [I + S [_-I (Dr - D)]]-I. (Same as 44)

Walker et al. (1989) have also developed an expression for the

elastic effective material properties independent of the above methods.

But as will be seen, their method is also another form of the basic NSC

method. Their equation for the elastic effective material properties of a

composite is given by Eq. 165 in Walker et al. (1989); it is

= Vf Df [I + S [_-1 (Dr - D)]]-I +

+ (1-Vf) Dm [I + S [I)-1 (Dm - _))]-1 (47)

This form is difficult to manipulate to give Eq. 44. But if one returns to

Eq. 114 in their report from which Eq. 47 was derived, an alternate

derivation will glve Eq. 44. Equation 114 of Walker - without the

inelastic strain (elgenstraln) terms - is

Act° = Vf Df AcT(f) + Vm Dm AcT(m), (48)

which Is the rule of mixtures for the stresses In an elastic composite.

Furthermore, one observes that Eq. 48 is the incremental form of Eq. 9.

Therefore, following the same method of derivation, Eq. 48 becomes Eq. 13,

= Dm + Vf(Df - Dm) T, (13)

where T is replaced by T. It is interesting to note that Eq. 13 is also

the same as Eq. 87 in Walker et al. (1989). The elastic portion of that

equation is given by

Ao_ = DmAc ° - _[v_D(r) AcT(r) dv,
(49)

where V is the total volume of the composite subvolume, and 8D is equal to

0 in the matrix region and equal to Df-D m in the fiber region. Rewriting

Eq. 49 in the standard notation used in this paper, and evaluating the

integral gives

Act° = DmAc ° - 0 - Vf[D m AcT(f) - Df ACT(f)]. (SO)

This can be rearranged to glve

AC ° = DmAe ° + Vf(Df - Dm) AcT(f). (51)
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This too is the same as Eq. 13, except that it is in an incremental form.

Thus both Eqs. 87 and I14 of Walker's are the same, and are also the same

as Eq. 13 in this report. The only other term that is needed is the strain

concentration tensor T. Again tur nlng to the work of Walker et al. (1989),

they derive this tensor for the Inelastlc case though extensive equation

manlpulatlon uslng a Green's function formulation. The end result, given

as Eq. 12S of their report, produces a T tensor identical to that in Eq.

43 of this report. In summary, the elastic portion of their self-

consistent method is the same as the standard NSC method.

As expected, both Eq. 44 (the basic NSC equation) and Eq. 47 (the

Walker solution) give the same results, but Eq. 44 converges much more

rapidly. The results of the NSC method are shown in Figs. I-6. In all

cases, except for E33, the NSC results deviated from the elasticity

solutions. This can be partially attributed to the assumption of constant

strain in the inclusions, which is not true at high concentrations of

inclusions.

Useful insight can be acquired by comparing Budtansky's (1965)

equations with Eq. 44 for the bulk and shear moduli of a composite where

the inclusions are spherical voids. Budtansky derived elastic solutions
which show that if the bulk and shear modull of the inclusions are zero

valued (voids), and the matrix bulk modulus is infinite (incompressible),

then the shear and bulk moduli of the composite will be given by

-- I3(1-2Vf ) ]I/ = 3-Vf _Im'
(52)

_ = [ 4(l-2Vf)(l-Vf) 1Vf (3-Vf ) Kin"
(53)

Equation 44, which is in tensor form, can be rearranged to give Eq. 52,

since there are no off-dlagonal shear terms in the D matrix. However, Eq.

53 cannot be obtained because the bulk modulus K is a combination of two

or more D components, and can therefore only be solved numerically. But

when Eq. 44 is solved by successive substitution with the conditions _f =

Kf = 0 and Ks = m, the solution diverges from the correct answer as given

in Eqs. S2 and S3. One reason for this can be seen if Df = 0 is substi-

tuted into Eq. 44 to give

= Dm - VfDm [I +Sm [5-I (__)]]-1, (S4)

or simplifying,

= DR [I- Vf tl - S.J-I]. (5S)

The [I-S] term is singular whenever u = 0.5 is used to calculate the

Eshelby tensor, Sm. Also, Dm is very large since Km = m. These two

conditions make it extremely hard to converge to the correct answer
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numerically. Another numerical difficultly that arises in solving Eq. 54

is when the Polsson ratio, u, is less then 0.2, which can easily happen

during the convergence process. If u < 0.2 or u > 1.0, then the Eshelby

tensor will have negatlve terms in the main diagonal of the matrix. This

makes all dlrect substitution solution technlques diverge.

The above two difficulties are not directly apparent for the case of

fiber inclusions because of the complexity of the equations, but they may

be one cause for the slow convergence. It should be noted that the D

matrix does become symmetrical after the iteration process has fully

converged, thereby satisfying the requirement of a symmetric stiffness

matrix.

Revised Mori-Tanaka using the NSC Method

Recall, in the derivation of the Mori and Tanaka (1973) method a new

strain concentration matrix, G, was introduced which relates the strain in

the inclusion to the strain in the matrix (ef = Gcm). This was then used

to derive the following relation

= Dm + Vf(Df - D m) A,

where A = G [VmI + VfG] -1.

(56)

At this point, Mori-Tanaka method sets G = T using ad hoc arguments that

they advocate are a consequence of considering the non-dilute case.

However, the actual form of T is still derived from the dilute case. This

can be shown by deriving the strain concentration matrlx, G, in terms of

the non-dilute condition. From Eq. 47 (or Eqs. 125 and 142 of Walker et

al., 1989) the strain in the fiber and matrix for the non-dilute case can

be written ms

c r = [I + S [5-I (Dr - _)]]-1 co = Tf c ° (57)

c m = [I + S [_-1 (Din - D)]] -1 c ° = Tm c ° (58)

Substituting Eqs. 57 and 58 into cf = G cm gives

Tf C° -- G Tm C°, (59)

and rearranging gives

G : Tf T_ 1. (60)

Looking at the limiting case as Vf d 0, then D _ Dm and S d Sm, and G

becomes
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G C. = [I . S® I (Of- 0.)]]-I - T. (61)

However, for the other limiting case as Vf 9 I, then D _ Dr and S 9 Sf,
and G becomes

G -) Gf = I + Sf [DfI(D. - Dr)] m T, (62)

which is not the same T as implied in the original Mori-Tanaka method.

Therefore, the Mori-Tanaka method cannot assume G = T for all cases of Vf.

It is interesting to note that when G, as derived in Eq. 60, is used

in Eg. 56, the results for the effective material properties, D, are

identical to the results from the NSC method. This should not be too

surprisln E however, since the new G was derived using the same basic

equations (Eqs. 47) for the matrix and fiber strain. The reduction of Eq.

56 to the NSC equation is accomplished by substituting G back into Eq. 56

giving

A : Tf Tm I [Vm I + Vf Tf T;I] -I (63)

which can be simplified to

A = Tf IVm Tm + Vf Tf] -I (64)

The T terms in the brackets can be replaced by Eqs. 57 and 58, giving

A= Tr [%c., vr cr]-1 (65)

This reduces to

A = Tf = [I + S [D-I (Dr - _)]]-I (66)

because t° = VmCm + Vfc f, which is the same as the NSC method. Therefore,

this modified Mori-Tanaka method is just the NSC method.

Suntnary and Conclusion

Various self-consistent and elasticity solutions have been presented

and compared with the method developed by Walker et al. (1989) for

predicting the effective material properties. It was found that the Walker

et al. method for the elastic material properties is identical to the

self-consistent method for non-dilute concentrations (NSC) presented by

Hill (1965) and Budiansky (1965), and later by Nemat-Nasser (1981). Also,

the solutions for the NSC method are shown to deviate from the elastic

solutions of Hashln (1965, 1972) and Christensen and Lo (1979), and the

Mori-Tanaka (1973) self-conslstent method, when the fiber volume ratio Vf
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exceeded about one-half. However, for practical metal matrix composites
where the fiber volume ratio is generally less then one-half, all methods
give adequate results.

Because the NSCmethod does not stay within the accepted bounds for
the effective elastic material properties, it should only be used with
great care and caution. A second detriment to using the NSCmethod is the
iteratlve nature of the solution. The convergence is slow using successive
substitution, and would be difficult to implement into a finite element
program where this method would be used at every element node point. It
might be possible to use a higher order solution technique to improve on
the convergence, but that was not investigated in this report.

In order to stay within the elastic solution bounds, and to minimize

the solution time, it is recommended that a non-lterative approach such as
the Mori-Tanaka or Christensen-Lo methods be examined for extension to

include the inelastic material properties. The Christensen-Lo method would

be the first choice because it is an exact elasticity solution, but it

will be the more difficult of the two to extend into the inelastic region.

The other choice, the Mori-Tanaka method, should be easier to extend

because it is already in tensor form, but there are still unanswered

questions about its theoretical validity.
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